Radiative Decays: $B_C^{*\pm} \to B_C^{\pm} \gamma$ in the Relativistic Independent Quark Model

S P PATRA¹, S PATNAIK², S KAR¹, P C DASH² and N BARIK³

Received: 6.6.2016; Revised: 5.7.2016; Accepted: 8.8.2016

Abstract. We study the electromagnetic form factor of $B_c^{*\pm}$ meson decays via one photon radiative decays: $B_c^{*\pm} \to B_c^{*\pm} \gamma$ in the relativistic independent quark (RIQ) model based on a flavor independent average interaction potential in the scalar-vector harmonic form. The momentum dependent space like form factor is analytically continued from space like region $(q^2(0))$ to the physical time like region: $0 \le q^2 \le (M_{B_c^{*\pm}} - M_{B_c^{\pm}})$ Our predictions of the coupling constant $g_{B_c^{*\pm} \to B_c^{*\pm} \gamma} = F_{B_c^*B_c}(q^2 = 0)$ and the decay width $\Gamma(B_c^{*\pm} \to B_c \gamma)$ are comparable to other model predictions. The decay width $\Gamma(B_c^{*\pm} \to B_c \gamma)$ which is proportional to $(\Delta m)^3 = (M_{B_c^{*\pm}} - M_{B_c^{*\pm}})^3$, is found sensitive to $B_c^{*\pm}$ meson mass. This may help determine the unmeasured $B_c^{*\pm}$ meson mass expected at LHC in near future.

Keywords: Electromagnetic form factor, Coupling constant, Decay width

[Full Paper]

¹Department of Physics, North Orissa University, Baripada-757003

²Department of Physics, Siksha 'O' Anusandhan University, Bhubaneswar-751030

³Department of Physics, Vani Vihar, Utkal University, Bhubaneswar-751004